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of 1,8-dimethoxy-9-dimethoxymethylanthracene monocatign (
as the first fully characterized hypervalent 10-C-5 compound.
Preparation ofl is illustrated in Scheme 1. Commercially
available 1,8-dihydroxyanthraquinor® (vas converted t6 via
methylatiod” followed by reductiof and trifluoromethane-
sulfonation. Carbon monoxide insertidnto 5 in methanol
mediated by Pd(PRJx gave6 in 52% vyield.6 was treated with
Department of Chemistry, Graduate School of Science trimethyloxonium tetrafluoroborate (M@"BF,~) under CHClI,
Hiroshima Unpersity, 1-3-1 Kagamiyama  reflux for 20 h, and after filtration of excess M@ BF,~ and
Higashi-Hiroshima 739-8526, Japan  removal of the solvent] was obtained as a yellow-green solid.
Department of Chemistry, Graduate School of Science 1 is thermally stable but is sensitive to atmospheric moistie.
Tokyo Metropolitan Uniersity, 1-1 Minami-osawa ~ NMR chemical shift of the central carbon is found92.58
Hachioji, Tokyo 192-0397, Japan  ppm, which is confirmed by independent preparatior ofsing
Receied August 2, 1999 carbon monoxide!fC 99%) in the process to conveitto 6.
Crystals of1 suitable for X-ray analysis were obtained by
The bimolecular nucleophilic substitution (& reaction at careful recrystallization from dry CDg;land the X-ray structure
saturated carbon such as hydrolysis of methyl halides is one ofis shown in Figure 2% The counteranion is &~ unexpectedly
the most important and the most popular reactions in organic but it is well separated from the cationic part. The structure clearly
chemistry:2 The mechanism of the reaction invoking inversion shows the symmetrical nature of the compound. The sum of the
of configuration of the central carbon is one of the fundamental angles (C9-C19-03, C9-C19-04, and O3-C19-04) around
ideas of organic reactions and is described commonly in textbooksthe central carbon is 36C.0indicating that the carbon is planar
for undergraduate studeritThe structure of the transition state  with sp? hybridization. The angles around the oxygen atoms of
(TS) of 42 should be trigonal bipyramid (TBP) around the central the methoxy groups are 119.2{§C1-01-C15) and 120.3(9)
carbon® Hence the bonding about the carbon involves, at least (C8—02—C16), showing that both oxygen atoms have® sp
formally, expansion of the valence shell and is called hypervalent. hybridization. Since the carbon atoms of the methoxy groups at
Due to the fundamental importance ofZ5 there have been a  1,8-positions are in the plane of the anthracene, one of the lone
variety of efforts to stabilize the TS and even to prepare model pairs of each oxygen atom should be directed toward the empty
compounds of TS; typical examples are by Hajad Martin’~10 p-orbital of the central carbocation at the 9 position. Therefore,
They claimed that they observed symmetrical TBP structure for geometry around the central carbon atom is TBP, which is only
the model compounds in solution. However, the X-ray structure slightly distorted. The two O- -C distances are almost identical
of dimethyl-1-fluorenylcarbenium hexachloroantimonate bearing (2.43(1) and 2.45(1) A), which is significantly longer than that
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two methylthio groups at the 9-positibnevealed that the two

of a covalent G-O bond (1.43 A3* but shorter than the sum of

S—C* distances were different and the compound should be the van der Waals radius (3.25 ).

regarded as a sulfonium structérend X-ray analysis of the

To elucidate the property and the degree of interaction between
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8 positions has not been reporfed? Theoretical calculations on

compounds were synthesized and were structurally characterized
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Table 1. Comparison of the Distances between the Atoms at the
1,8,9-Positionsg anda’) with Those between the Ipso Carbots (
andb') of Anthracene Derivatives

compd a a b o]
7. X=Y=Br 3.2658(6) 3.2738(6) 2.564(6) 2.567(6)
5. X=0Tf,Y =0Me 2572(2) 2.571(2) 2.554(3) 2.545(3)
8 X=CN,Y=0OMe 2530(3) 2.531(3) 2.538(6) 2.542(4)
1: X = C*(OMe), 2.45(1) 2.43(1) 2.49(2) 2.52(2)
Y = OMe

The geometry ofl was fully optimized by hybrid nonlocal
density functional theory (DFT) at the B3LYP/6-31G* level using
the Gaussian 94 prograth.The calculation indicates that the
symmetricalCs structure ofl is the energy minimum. The two
C- -O distances are identical (2.480 A), and are slightly longer
than the experimental distances (2.44(1) A). It should be noted
that the bond paths are found between the central carbon atom
and the two oxygen atoms, clearly showing that these atoms are
bonded?* The bond is weak and ionic based on the small value
of the electron densityp(r)) (0.022 e/ad) and the small positive
Laplacian valueV?o(r)) (0.078 e/a®) at the bond critical point&'
These values are consistent with those of axialHCbonds in
CHs™ (p(r): 0.067 e/ad V?p(r): 0.009 e/a®).?®> A large value
(0.233) of the ellipticity of the O- -C bond reflects the electron
donation to the central carbocation from the two lone pairs of
the oxygen atoms of the methoxy groups at 1,8-positions within
the anthracene plane. In conclusion, the anthracene carbocation
1is the first fully characterized pentacoordinate 10-C-5 compound
for a model of the transition state o{&

Figure 1. Crystal structure (30% thermal ellipsoids) bf

Figure 2. Crystal structures (30% thermal ellipsoids)®f7, 8, and1. ) o
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and the atoms at the 1,8-positio_rasa(nd &) and the distances  ja992719G

between the ipso carboris §ndb'’) is also worthy of note (Table
1). In the cases of and5 the averaged distances afand &

(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson,

(3.2698(6) A in7, 2.572(2) A in5) are longer than those df
andb' (2.566(6) A in7, 2.550(3) A in5), while in 8, the averaged
distance ofa anda' (2.531(3) A) is comparable with that &f
andb’ (2.540(5) A). In contrast, il the averaged distance af
anda’ (2.44(1) A) is clearly shorter than that blandb' (2.51(2)

A). Therefore, it can be concluded that the interaction between
the central carbon atom and the two oxygen atom$ amould

be clearly attractive.
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