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The bimolecular nucleophilic substitution (SN2) reaction at
saturated carbon such as hydrolysis of methyl halides is one of
the most important and the most popular reactions in organic
chemistry.1,2 The mechanism of the reaction invoking inversion
of configuration of the central carbon is one of the fundamental
ideas of organic reactions and is described commonly in textbooks
for undergraduate students.3 The structure of the transition state
(TS) of SN2 should be trigonal bipyramid (TBP) around the central
carbon.4 Hence the bonding about the carbon involves, at least
formally, expansion of the valence shell and is called hypervalent.5

Due to the fundamental importance of SN2, there have been a
variety of efforts to stabilize the TS and even to prepare model
compounds of TS; typical examples are by Hojo6 and Martin.7-10

They claimed that they observed symmetrical TBP structure for
the model compounds in solution. However, the X-ray structure
of dimethyl-1-fluorenylcarbenium hexachloroantimonate bearing
two methylthio groups at the 9-position6 revealed that the two
S-C+ distances were different and the compound should be
regarded as a sulfonium structure,6 and X-ray analysis of the
9-anthracenylmethyl dication bearing phenylthio groups at 1 and
8 positions has not been reported.7-10 Theoretical calculations on
SN2 are also numerous and they conclude that hypervalent 10-
C-5 species should be TBP and energy maximum.11 On the other
hand, recently reported exotic highly coordinate carbon species
such as CH5+ 12,13 and CLi5,14 CLi6,15 and (Ph3PAu)5C+ 16 are
electron deficient carbocations and/or are stabilized by metal-
metal cage interactions. Therefore, these compounds cannot be
regarded as hypervalent 10-C-5 species for models of the SN2
transition state. Here we report the synthesis and crystal structure

of 1,8-dimethoxy-9-dimethoxymethylanthracene monocation (1)
as the first fully characterized hypervalent 10-C-5 compound.

Preparation of1 is illustrated in Scheme 1. Commercially
available 1,8-dihydroxyanthraquinone (2) was converted to5 via
methylation17 followed by reduction18 and trifluoromethane-
sulfonation. Carbon monoxide insertion19 to 5 in methanol
mediated by Pd(PPh3)4 gave6 in 52% yield.6 was treated with
trimethyloxonium tetrafluoroborate (Me3O+BF4

-) under CH2Cl2
reflux for 20 h, and after filtration of excess Me3O+BF4

- and
removal of the solvent,1 was obtained as a yellow-green solid.
1 is thermally stable but is sensitive to atmospheric moisture.13C
NMR chemical shift of the central carbon is found atδ 192.58
ppm, which is confirmed by independent preparation of1 using
carbon monoxide (13C 99%) in the process to convert5 to 6.

Crystals of1 suitable for X-ray analysis were obtained by
careful recrystallization from dry CDCl3, and the X-ray structure
is shown in Figure 1.20 The counteranion is B2F7

- unexpectedly
but it is well separated from the cationic part. The structure clearly
shows the symmetrical nature of the compound. The sum of the
angles (C9-C19-O3, C9-C19-O4, and O3-C19-O4) around
the central carbon is 360.0°, indicating that the carbon is planar
with sp2 hybridization. The angles around the oxygen atoms of
the methoxy groups are 119.2(9)° (C1-O1-C15) and 120.3(9)°
(C8-O2-C16), showing that both oxygen atoms have sp2

hybridization. Since the carbon atoms of the methoxy groups at
1,8-positions are in the plane of the anthracene, one of the lone
pairs of each oxygen atom should be directed toward the empty
p-orbital of the central carbocation at the 9 position. Therefore,
geometry around the central carbon atom is TBP, which is only
slightly distorted. The two O- -C distances are almost identical
(2.43(1) and 2.45(1) Å), which is significantly longer than that
of a covalent C-O bond (1.43 Å)21 but shorter than the sum of
the van der Waals radius (3.25 Å).21

To elucidate the property and the degree of interaction between
the central carbon atom and the two oxygen atoms in1, several
compounds were synthesized and were structurally characterized
for comparison.22 The side views of crystal structures of 1,8,9-
tribromo- (7), 1,8-dimethoxy-9-trifluoromethanesulfonyloxy- (5),
and 1,8-dimethoxy-9-cyanoanthracene (8) are shown in Figure 2
together with1. In the structure of tribromo derivative7, the three
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bromine atoms are placed out of plane of the anthracene skeleton
to avoid large steric repulsion. Although the distortion from the
plane of the skeleton is not at all significant, the three oxygen
atoms in5 are not placed in the plane because of repulsion. In
the case of8 and the cation1, the atoms attached to the 1,8,9-
positions are almost in the plane of anthracene, indicating the
interaction between the central carbon atom and the two oxygen
atoms is not repulsive but attractive. The comparison of the
distances between the atom at the 9-position of the anthracene
and the atoms at the 1,8-positions (a and a′) and the distances
between the ipso carbons (b andb′) is also worthy of note (Table
1). In the cases of7 and 5 the averaged distances ofa and a′
(3.2698(6) Å in7, 2.572(2) Å in5) are longer than those ofb
andb′ (2.566(6) Å in7, 2.550(3) Å in5), while in 8, the averaged
distance ofa and a′ (2.531(3) Å) is comparable with that ofb
andb′ (2.540(5) Å). In contrast, in1 the averaged distance ofa
anda′ (2.44(1) Å) is clearly shorter than that ofb andb′ (2.51(2)
Å). Therefore, it can be concluded that the interaction between
the central carbon atom and the two oxygen atoms in1 should
be clearly attractive.

The geometry of1 was fully optimized by hybrid nonlocal
density functional theory (DFT) at the B3LYP/6-31G* level using
the Gaussian 94 program.23 The calculation indicates that the
symmetricalCs structure of1 is the energy minimum. The two
C- -O distances are identical (2.480 Å), and are slightly longer
than the experimental distances (2.44(1) Å). It should be noted
that the bond paths are found between the central carbon atom
and the two oxygen atoms, clearly showing that these atoms are
bonded.24 The bond is weak and ionic based on the small value
of the electron density (F(r)) (0.022 e/ao3) and the small positive
Laplacian value (∇2F(r)) (0.078 e/ao5) at the bond critical points.24

These values are consistent with those of axial C-H bonds in
CH5

- (F(r): 0.067 e/ao3, ∇2F(r): 0.009 e/ao5).25 A large value
(0.233) of the ellipticity of the O- -C bond reflects the electron
donation to the central carbocation from the two lone pairs of
the oxygen atoms of the methoxy groups at 1,8-positions within
the anthracene plane. In conclusion, the anthracene carbocation
1 is the first fully characterized pentacoordinate 10-C-5 compound
for a model of the transition state of SN2.
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Scheme 1

Figure 1. Crystal structure (30% thermal ellipsoids) of1.

Figure 2. Crystal structures (30% thermal ellipsoids) of5, 7, 8, and1.

Table 1. Comparison of the Distances between the Atoms at the
1,8,9-Positions (a anda′) with Those between the Ipso Carbons (b
andb′) of Anthracene Derivatives

compd a a′ b b′
7: X ) Y ) Br 3.2658(6) 3.2738(6) 2.564(6) 2.567(6)
5: X ) OTf, Y ) OMe 2.572(2) 2.571(2) 2.554(3) 2.545(3)
8: X ) CN, Y ) OMe 2.530(3) 2.531(3) 2.538(6) 2.542(4)
1: X ) C+(OMe)2,

Y ) OMe
2.45(1) 2.43(1) 2.49(2) 2.52(2)
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